K25P 0953

Reg.	No.	:	

Name :

IV Semester M.Sc. Degree (C.B.C.S.S. – OBE-Regular) Examination, April 2025 (2023 Admission) MATHEMATICS

MSMAT04C14: Operator Theory

Time: 3 Hours Max. Marks: 80

PART – A

Answer any five questions from this Part. Each question carries 4 marks. (5×4=20)

- 1. Let $T: X \to Y$ be a bounded linear operator, where X and Y are normed spaces and g be any bounded linear functional on Y. Then prove that the functional f(x) = g(Tx), $x \in X$ is linear.
- 2. Define canonical mapping C from a normed space X into the second dual space X". Prove that the canonical mapping C is an isimorphism of the normed space X onto the normed space R(C), the range of C.
- 3. Explain the uniform approximation on [a, b].
- 4. Describe the Gram determinant of $y_1, y_1, ..., y_n$.
- 5. Show that total boundedness implies boundedness, but the converse does not generally hold.
- 6. When can you say that a bounded self-adjoint linear operator is positive? Prove that the sum of positive operators is positive.

PART - B

Answer any three questions from this Part. Each question carries 7 marks. (3×7=21)

- 7. If a linear operator $T: \mathbb{R}^n \to \mathbb{R}^n$ is represented by a matrix T_{E^*} then prove that the adjoint operator T^X is represented by the transpose of T_E .
- 8. Give an example of an operator with a spectral value but which is not an eigenvalue.
- 9. Let X and Y be normed spaces and T: X → Y a linear operator. Then prove that T is compact if and only if it maps every bounded sequence (x_n) in X onto a sequence (Tx_n) in Y which has a convergent subsequence.
- 10. Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then Prove that,
 - a) All the eigenvalues of T are equal, and
 - b) Eigenvectors corresponding to different eigenvalues of T are orthogonal.
- 11. Prove that the spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \to H$ on a complex Hilbert space H lies in the closed interval [m, M] on the real axis, where $m = \inf_{\|x\|=1} \left\langle Tx, x \right\rangle$ and $M = \sup_{\|x\|=1} \left\langle Tx, x \right\rangle$.

PART - C

Answer any three questions from this Part. Each question carries 13 marks.

 $(3 \times 13 = 39)$

- 12. Define a closed linear operator from a normed space X to a normed space Y. State and prove the closed graph theorem.
- 13. Prove that the resolvent set $\rho(T)$ of a bounded linear operator T on a complex Banach space X is open.

- 14. Let T: X → Y be a linear operator. Prove that if T is compact, so is its adjoint operator T^x: Y' → X', where X and Y are normed spaces and X' and Y' are their dual spaces respectively.
- 15. Let $T: X \to X$ be a compact linear operator on a normed space X and let $\lambda \neq 0$. Then prove that there exists a smallest integer r (depending on λ) such that from n = r on, the null spaces $N(T_{\lambda}^n)$ are all equal, and if r > 0, the inclusions $N(T_{\lambda}^0) \subset N(T_{\lambda}^1) \subset ... \subset N(T_{\lambda}^r)$ are all proper.
- 16. Let (T_n) be a sequence of bounded self-adjoint linear operators on a complex Hilbert space H such that $T_1 \le T_2 \le ... \le T_n \le ... \le K$ where K is a bounded self-adjoint linear operator on H. Suppose that any T_j commutes with K and with every T_m . Then prove that (T_n) is strongly operator convergent and the limit operator T is linear, bounded and self-adjoint and satisfies $T \le K$.